Solving Quadratic Equations
by Completing the Square

I Move the Constant Term to the RIGHT side of the equation,
Move the \(x^2 \) and \(x \) terms to the LEFT side of the equation.

II Get a leading coefficient of 1 (i.e. \(1x^2 + \ldots \)). If necessary, divide both sides of the equation by the coefficient of \(x^2 \).

III **Complete the Square** by
 Taking \(\frac{1}{2} \) of the coefficient of \(x \),
 Square this result,
 Then add the squared result to Both Sides of the equation.

IV Factor the Perfect Square Trinomial on the left side of the equation.

V Use the Square Root Method (take the Square Root of Both SIDES of the equation) to solve the resulting equation.
Solve the following Quadratic Equation by Completing the Square

\[2x^2 + 12x + 4 = 0\]

\[2x^2 + 12x + 4 = 0\]
\[\frac{2x^2}{2} + \frac{12x}{2} = \frac{-4}{2}\]

\[x^2 + 6x = -2\]

\[\frac{1}{2} \cdot 6 = 3, (3)^2 = 9\]

\[x^2 + 6x + 9 = -2 + 9\]

\[x^2 + 6x + 9 = 7\]

\[x^2 + 6x + 9 = 7\]

\[(x + 3)(x + 3) = 7\]

\[(x + 3)^2 = 7\]

\[\sqrt{(x + 3)^2} = \sqrt{7}\]

\[x + 3 = \pm \sqrt{7}\]

\[x = -3 \pm \sqrt{7}\]