DEFINITION OF CONTINUITY

A function \(f \) is said to be continuous at \(x = c \) provided the following conditions are satisfied:

1. \(f(c) \) is defined
2. \(\lim_{{x \to c}} f(x) \) exists
3. \(\lim_{{x \to c}} f(x) = f(c) \)

\[f \text{ is continuous at } x = c \iff \lim_{{x \to c}} f(x) = f(c) \]

Note: The definition above implies the following:

\[\lim_{{x \to c^-}} f(x) = \lim_{{x \to c^+}} f(x) = f(c) \] \(\iff \) \(\lim_{{x \to c}} f(x) \) exists \(\iff \) \(f(c) \) is defined \(\iff \) \(f(c) \) exists

Theorems

Suppose the functions \(f \) and \(g \) are continuous at \(c \), then

- \(f \pm g \) are continuous at \(c \).
- \(fg \) is continuous at \(c \).
- \(f / g \) is continuous at \(c \) provided \(g(c) \neq 0 \).
- \(f \circ g \) is continuous at \(c \) provided \(g \) is continuous at \(c \) and \(f \) is continuous at \(g(c) \).

A polynomial is continuous everywhere.

A rational function is continuous at every point where the denominator is nonzero.