Using the Graphing Calculator to Solve Equations
(Intersection Technique)

Solve the equation: \(x^2 + 2x - 3 = 4x + 5 \)

Method 1: Using the Intersection of 2 Graphs

Press \(Y= \) on your graphing calculator to enter your functions
Let \(Y_1 = x^2 + 2x - 3 \), the left side of the equation
Let \(Y_2 = 4x + 5 \), the right side of the equation

Press \(\text{WINDOW} \) on your graphing calculator to set the graphing window
Let \(X_{\text{min}} = -8 \), \(X_{\text{max}} = 8 \), \(X_{\text{scl}} = 1 \), \(Y_{\text{min}} = -8 \), \(Y_{\text{max}} = 25 \), \(Y_{\text{scl}} = 1 \), \(X_{\text{res}} = 1 \)

Press \(\text{GRAPH} \) on your graphing calculator to graph the 2 functions
Your graph should look similar to the graph below

Now find the point(s) of intersection

Press \(\text{2nd} \ \text{CALC} \) \text{Intersect} and find the 1st point of intersection of the 2 graphs
\(x = -2 \) \quad \Rightarrow \text{point of intersection} \quad (2, 3) \quad \Rightarrow \text{root of the equation} \quad x = -2 \)

Press \(\text{2nd} \ \text{CALC} \) \text{Intersect} again and find the 2nd point of intersection of the 2 graphs
\(x = 4 \) \quad \Rightarrow \text{point of intersection} \quad (4, 21) \quad \Rightarrow \text{root of the equation} \quad x = 4 \)

Conclusion: The solution to the equation \(x^2 + 2x - 3 = 4x + 5 \) is \(x = -2 \) or \(x = 4 \)
Using the Graphing Calculator to Solve Equations
(Intersection / x-intercept Technique)

Solve the equation: \(x^2 + 2x - 3 = 4x + 5 \)

Method 2 Using the x-intercept(s) of a Graph

First, you must set one side of the equation equal to zero

\[
\begin{align*}
x^2 + 2x - 3 &= 4x + 5 \\
-4x - 5 &= 4x - 5 \\
x^2 - 2x - 8 &= 0
\end{align*}
\]

is the resulting equivalent equation.

Press \[\text{Y=} \] on your graphing calculator to enter your function

Let \(Y_1 = x^2 - 2x - 8 \), the left side of the equation

Let \(Y_2 = 0 \), the right side of the equation

Press \[\text{WINDOW} \] on your graphing calculator to set the graphing window

Let \(\text{Xmin} = -8 \), \(\text{Xmax} = 8 \), \(\text{Xscl} = 1 \), \(\text{Ymin} = -15 \), \(\text{Ymax} = 25 \), \(\text{Yscl} = 1 \), \(\text{Xres} = 1 \)

Press \[\text{GRAPH} \] on your graphing calculator to graph the function

Your graph should look similar to the graph below

\[\text{Graph Image} \]

Now find the x-intercept(s) of the graph; the intersection of the graphs.

Press \[2^{nd} \text{ CALC} \] \textbf{Intersect} and find the 1st point of intersection of the 2 graphs

\[
x = -2 \quad y = 0 \quad \Rightarrow \text{(-2,0) is a point of intersection of the 2 graphs} \\
\Rightarrow \quad x = -2 \text{ is a root of the equation}
\]

Press \[2^{nd} \text{ CALC} \] \textbf{Intersect} again and find the 2nd point of intersection of the 2 graphs

\[
x = 4 \quad y = 0 \quad \Rightarrow \text{(4,0) is a point of intersection of the 2 graphs} \\
\Rightarrow \quad x = 4 \text{ is a root of the equation}
\]

Conclusion: The solution to the equation \(x^2 + 2x - 3 = 4x + 5 \) is \(x = -2 \) or \(x = 4 \)
Using the Graphing Calculator to Solve Equations
(Zero Technique)

Solve the equation: \(x^2 + 2x - 3 = 4x + 5 \)

Method 3 Using the x-intercept(s) of a Graph

First, you must set one side of the equation equal to zero

\[
\begin{align*}
 x^2 + 2x - 3 &= 4x + 5 \\
 -4x - 5 &= -4x - 5 \\
 x^2 - 2x - 8 &= 0
\end{align*}
\]

is the resulting equivalent equation.

Press \(Y= \) on your graphing calculator to enter your function

Let \(Y1 = x^2 - 2x - 8 \), the left side of the equation

Press \(\text{WINDOW} \) on your graphing calculator to set the graphing window

Let \(\text{Xmin} = -8 \), \(\text{Xmax} = 8 \), \(\text{Xscl} = 1 \), \(\text{Ymin} = -15 \), \(\text{Ymax} = 25 \), \(\text{Yscl} = 1 \), \(\text{Xres} = 1 \)

Press \(\text{GRAPH} \) on your graphing calculator to graph the function

Your graph should look similar to the graph below

Now find the x-intercept(s) of the graph, which are the (real) zero(s) of the function

Press \(\text{2nd CALC} \) zero to find the 1\(^{st}\) x-intercept of the graph

\[
\begin{align*}
 x &= -2 \\
 y &= 0 \Rightarrow x = -2 \text{ is an x-intercept of the graph} \\
 \Rightarrow x &= -2 \text{ is a root of the equation}
\end{align*}
\]

Press \(\text{2nd CALC} \) zero again to find the 2\(^{nd}\) x-intercept of the graph

\[
\begin{align*}
 x &= 4 \\
 y &= 0 \Rightarrow x = 4 \text{ is an x-intercept of the graph} \\
 \Rightarrow x &= 4 \text{ is a root of the equation}
\end{align*}
\]

Conclusion: The solution to the equation \(x^2 + 2x - 3 = 4x + 5 \) is \(x = -2 \) or \(x = 4 \)